Key Research Questions:

What factors influence students' use of real-world knowledge in physics problem-solving?

- How do we design problems to enable use of real-world knowledge?
- What prompts them or primes students to engage in realworld sensemaking during problem-solving?
- What do we mean by real-world knowledge?
- What are the different ways that students use real-world knowledge in physics problem solving?

Context-Rich Tutorial

In experiment 1 you measured your reaction time while paying attention and while distracted. Because of this (and other) experience with physics you have been hired as an intern for the Vancouver traffic planning department. The city council is concerned about the studies that have shown that talking on a cellphone impairs a drivers' reaction time while driving, and are considering implementing a ban on cellphones while driving. However, they want to investigate alternatives to a complete ban.

One potential solution is to have a different speed limit for drivers who are talking on their cellphone to compensate for the distraction. The idea is that if a distracted driver were moving more slowly, they might have the same braking distance as an alert driver. You investigate and find that an average car has a mass of 1300 kg , an average SUV has a mass of 1600 kg . The minimum legal deceleration for braking passenger cars is 0.6 g under wet conditions.

Based on your calculations, what recommendations will you make to city hall?

Note: Not all of the details in these headers will be relevant each week... they are only intended to give you an idea of the types of information that are relevant to that step

1. Interpret the problem

- Carefully read and visualize the events described in the problem
- If necessary, sketch a picture to clarify sizes, directions and spatial relationships
- Clearly state the GOAL of the problem: what do you need to calculate and/or compare?

2. Identify the relevant Physics Concepts

- List briefly the major physical principles that are relevant to this situation. (e.g. conservation of energy, Newton's second law, 1-D kinematics with constant acceleration, etc.)

Note: Steps a) and b) are in a different order this week. Because so little information is given in this problem it makes sense to start thinking about our assumptions first. Thinking about the relevant information and the assumptions you're going to make tends to happen at the same time, so feel free to go back and forth between these two steps as you work.

3. Create a Physics Model

- A physics model summarizes all of the information relevant to solving the problem, including any assumptions you make.
a) Define Physics Assumptions and Relationships
- Using words and formulas as appropriate, interpret how the situation affects the physics variables defined in step 3b. Be sure to state all:
- Limitations or constraints on the physical variables (e.g. v < 0)
- Relationships between the physical variables (e.g. $a_{1}=a_{2}$)
- Simplifying assumptions (i.e. friction negligible, massless rope, constant acceleration etc.)
- Initial conditions (i.e. $V_{i}=0, a_{i}=-g$)
b) Make a Diagram and Summarize the Relevant Information
- Write down a description that summarizes all of the relevant information in the problem statement in a clear way. This could include pictures, equations, or descriptions, or any of the following, where appropriate:
- A statement of known and unknown quantities, with appropriate symbols defined
- Any intuitions or expectations about the answer. (e.g. "because of the situation in this problem, I would expect the speed of car B to be only a little bit faster than that of car A")
- A specific physics diagram (free-body diagram, energy bar chart, motion diagram etc.)
- A coordinate system that specifies the reference and direction of measurement for any spatial variables. (e.g. "x = 0 is the tabletop, positive x is down" or equivalent symbols)

Make a simplified diagram that shows all of the dimensions relevant to this problem. Be sure to label the diagram with all of the relevant information, including everything you assumed above.

4. Solve the Problem

- Show all calculations

5. Check Your Answer (Error Checking / Sensemaking)

- Demonstrate that your result has the correct units
- Compare results to known benchmarks
- If necessary, perform additional calculations to check your answer is sensible

L1M Tut7

Example of students in formula-hunting mode
Resisting several prompts from TA to engage in sensemaking
Show no evidence of having a clear mental model of the situation

$14: 32.3$	S1	um, we have the acceleration...
$14: 33.8$	TA	the acceleration, and you have..
$14: 35.3$	S1	mass, and this, mass of the car
$14: 37.7$	TA	and...displacement
$14: 38.9$	S1	but we don't know the displacement
$14: 40.5$	S2	what is the displacement? We don't have any numbers...
$14: 43.3$	TA	oh, that goes under assumptions
$14: 45.9$	S2	oh
$14: 46.1$	S1	oh you assume?
$14: 46.2$	TA	like for example, what's the initial velocity of someone who
$14: 52.1$	isn't distracted?	
$14: 54.5$	TA	50 km per an hour?
$14: 55.8$	S2	(gat's about it, yes..
$14: 57.0$	S1	oh... exasperated)
$15: 00.2$	S2	so how do you assume the displace... oh I'm so confused
$15: 03.5$	TA	so how long would that person take to brake?
$15: 08.2$	S1	usually 50 km per an hour
$15: 10.0$	S2	50 km per an hour is average speed
$15: 12.4$	S1	50 ?
$15: 13.6$	S3	yeah, that makes sense
$15: 14.4$	S2	yeah, 50 . so how long would it take a person to brake?
$15: 16.8$	TA	ok. how long would it take that person to brake?
$15: 22.0$	S2	I dunno, uh, like timewise? or do you mean like distance?
$15: 26.6$	TA	timewise or distance wise. which one is most useful in that
$15: 31.5$	S2	context.
$15: 33.4$	I guess distance wise.	
$15: 35.1$	S2	why?

Same tutorial later on
Students express disbelief about "standard" physics assumption

28:05.1	S1	... distracted ... use this value ... see that doesn't make sense though. see, you know like, that doesn't mean it's constant acceleration if it's stepping on the brake. you know what I mean, it's like the car's decelerating, this is a constant acceleration question, it doesn't make sense
28:14.3	S2	
28:25.3	S3	it's decelerating...
28:27.4	S2	yeah I don't decelerate like that though. Let me tell you! (makes screech noise) (laughs)
28:31.5	S3	well just assume it..
28:33.7	S1	so assumptions would be.
$28: 36.8$	S3	just assume the acceleration (unintelligible)
$28: 40.3$	S2	assumptions yeah assume acceleration is constant
$28: 41.6$	S1	acceleration...
$28: 43.3$	S4	we have to assume the velocity?
$28: 45.5$	S2	no assuming the displacement. Assuming the displacement to find
$28: 51.5$	S1	no velocity. Right?

Students addressing worksheet's call for answer checking and sensemaking
(mumbling, writing) ... four... the before hitting the brake... it

35:35.2	S1	brakes... is 1.18 meters per second. so then we (unintelligible) this?
36:00.9	S4	so we can check our answers...
36:04.8	S1	our answer has the ... correct units. which is.. (interrupting) correct units. and say it makes logical sense 36:13.7
S2	comparing it to the... the units, yeah I said that. Units for velocity. Meters per second.	

Students addressing the workheet's call for a clear Model and Assumptions

$46: 30.2$	S1	choos it... is friction negligible? yeah. where IS friction?
46:33.6	S4	oh, ok. so we can see that, wait, displacement of... um... displacement of car.. equals .. displacement... second car (writing). I'm just. it says make assumptions like that.
47:01.9	S2	S1
47:07.9	S4 we need to say, like, distracted or not distracted	
47:20.6	S2	yeah. I htink we should write that down too, that friction is negligible. uh.

$47: 20.7$	S1	definitely also um... (mumble)
$47: 23.7$	S2	oh, Vi?
$47: 23.8$	S1	oh that velocity final is zero once you hit the brakes. there. I think it's good, just..
$47: 35.3$	S2	the mass of the car is... the mass of the two cars is the same $47: 37.2$
S1	so we ignore the masses.	
$47: 42.0$	S4	mmm.
$47: 51.7$	TA	(announcing) uh, ok everyone. so that's time,

L1EA7

Students are prompted to write assumptions
This actually does trigger a conceptual discussion

	s2	um... are we considering air resistance?
0:07:08	s1	no. we don't need to consider that. Because it's decelerating
	s3	assume no air friction then
		well, we don't even need to take that into account at all, because
		like, it's giving us... we can assume that he travels at a constant speed the whole time. so it's not slowing down, so why would he
0:07:15	s1	need to take into account air friction. And then when he needs to slow down and brakes with 0.6 g of deceleration, then why would we need to take air friction into account in that case either, right? it's like
0:07:40	s3	so we're assuming nothing?
	s1	lemme think.
	s3	. oh assume reaction time
	s1	it's irrelevant, like, we can say that, like, friction, air friction, those concepts are irrelevant in this problem.
0:07:58	s4	so what about reaction time?
	s3	assume 3-4?
	s1	(interrupts) well we can assume, we assume that his reaction time would double from normal due to the distraction.
	s2	double to what? to six seconds?
		six seconds. so we can make a reasonable assumption that his
	s1	reaction time would be six seconds as opposed to, like, three second for another driver
0:08:29	s3	that's long
	s1	can I see that?
		do we also have to assume that the other driver is driving at
0:08:30	s2	the legal speed? I mean, if he's matching up with the other driver, right? what if the other driver is...
	s1	(interrupts) well we have to assume how fast they're going probably in order to, like, calculate what kind of...
0:08:49	s1	actually, what was the problem again(laughs)
	s2	I dunno

Later on. Good example of real-world sensemaking
This type of real-world sensemaking is enabled by contextualizing your problems in situations familiar to the students

		(long pause)
	s4	initial time is zero
0:13:59	s2	does the car slide a bit?
0:14:05	s1	no the car shouldn't slide. It would be horrible if the car slides, just like whenever it rains.
	s4	(laughs) ok
	s1	OK
	s1	yeah a car's
	s4	oh wait so that's... this is for ice
0:14:18	s3	(ignoring $s 1, \mathrm{~s} 2$) we have to assume, um, constant velocity.
	s4	(ignoring s1, s2) assume constant velocity?
0:14:19	s1	yeah, even on ice a car should *not* be sliding on the ice. Of course it's unavoidable.
0:14:29	s3	(ignoring s1, s2) uniform motion
	s1	uniform motion? OK I guess... until it brakes anyways

Challenge. How to code this segment?
Are students talking about what is going on, or what to do? Conceptual / procedural?

	s1 s3	the difference is that this guy reacts slower but then what's he takes longer to think that he needs to brake, but everything else takes the exact same amount of time
s1		

s2 not extra time.
s1 yeah extra.
s2 it's the amount of time he has to react extra time he takes to react. this, right?
this? yeah yeah. you're subtracting it off of .. then shouldn't it be addition.. uh... extra on top of this? They have to... aaaaaahhh it's hard to explain.
that's the distraction. the amount of time he's distracted for. the no it's the amount of time, the extra amount of time that it takes (interrupts) cuz this is how, the time he has to react. And then add no. no. he takes an extra. he takes a measure.. this is how long.. this is the brake time. This is how long they have, this is how long he has to hold the brakes. It decreases because he takes longer to react. It takes longer before he steps on the brakes. But they both must, y'know take the same amount of, y'know what I'm saying?

0:42:03

Jeopardy Question

Equation 1: The equation below describes an object undergoing some process. Solve for the unknowns, then construct a diagram depicting the process and explain a physical situation that could correspond to this description. Where necessary, provide a diagram of motion or energy flows.

Bonus points for a realistic situation
$X \mathrm{~g} / \mathrm{hr}^{*}(1 \mathrm{hr} / 3600 \mathrm{~s}){ }^{*}\left(10^{6} \mathrm{~J} / 1 \mathrm{MJ}\right) *(1 \mathrm{~kg} / 1000 \mathrm{~g}) * 30 \mathrm{MJ} / \mathrm{kg} * 40 \%=$ $\left.\left[\left(0.1 \mathrm{~W} /\left(\mathrm{K}^{*} \mathrm{~m}\right)\right)\right)^{*}\left(20^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right) * 2\left(4 \mathrm{~m}^{*} 10 \mathrm{~m}+4 \mathrm{~m}^{*} 20 \mathrm{~m}+10 \mathrm{~m} * 20 \mathrm{~m}\right)\right] /$ 0.2 m

L1HB tut6

Good example of protracted proposal / evaluation / refinement cycle Multiple real-world connections

Interpreting terms in a jeopardy question
Discussing the source term (which is some sort of fuel being turned into energy)

121	$07: 02.4$	S 3	(interrupting) we just don't know what grams... well what would be heat... what
122	$07: 04.4$	S 2	would be weah
123	$07: 05.2$	S 3	yeat's what we're after. that's that what we're being..
124	$07: 05.6$	S 1	it wouldn't be a heater, cuz heater doesnt' need grams, right?
125	$07: 07.4$	S 2	no, because that's gonna be watts right
126	$07: 09.1$	S 1	yeah 127
128	$07: 10.4$	S 2	won't be how grams can give us
129	$07: 10.9$	S 4	S 2

135	$07: 21.0$	S 1
136	$07: 25.7$	S 2
137	$07: 29.4$	S 3
138	$07: 33.1$	S 1
139	$07: 34.1$	S 2
140	$07: 34.8$	S 1
141	$07: 36.0$	S 2
142	$07: 40.5$	S 1
143	$07: 44.1$	S 3
144	$07: 46.4$	S 1
145	$07: 46.8$	S 2
146	$07: 47.9$	S 1
147	$07: 47.9$	S 3
148	$07: 50.4$	S 1
149	$07: 51.7$	S 4
150	$07: 52.1$	S 2
151	$07: 53.0$	S 3
152	$07: 54.3$	S 4
153	$07: 54.5$	S 1
154	$07: 56.4$	S 2

well it could be the person into the house outside, like. I mean that wouldn't really make sense no, no. That would have to be a person.
that box! (laughs)
what about a fire?
what?
a fire.
but then how would, how could
we... the fire's next to the box?
no, this could be a room, then we've got a fire on the inside.. and you add amount of grams x grams of.. grams of what?
wood maybe?
wood? or coal.
i dunno, it doesn't really make sense.
you could add grams of wood. fireplace?
coal?
I guess
grams of what for a...
could be a fireplace. fireplace is a box. Wait no, it's an open box.

