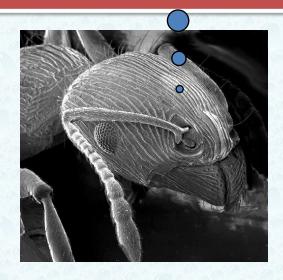
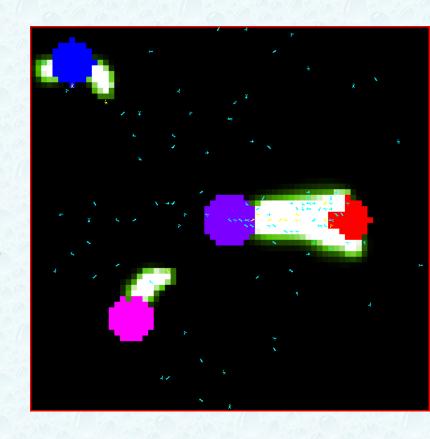
Complex Dynamics of Student Groups during Introductory Physics Tutorials


An exploration into how & why we might model tutorial groups this way

mmm...pheromones

Complex Systems: An


Ants are kinda dumb

- Ants have no sense of what is happening on a colony level
- Ants have no leaders among them
- Ants' behavior follows simple (and local) rules, based on pheromones
 - If an ant encounters a trail with x amount of pheromone, it has y probability of following the trail

Complex Systems: An Example

- Ant COLONIES are wicked smart
 - Colonies solve complicated problems
 - Colonies make important and difficult decisions
 - How to allocate colony's resources to defense, repair, foraging
 - How to find the quickest path to the best food
 - Which exit through which to escape

http://zool33.uni-graz.at/schmickl/models/ants foraging decision.html

Ant Colonies are Complex Systems

- Emergence
 - Patterns, properties, behaviors that cannot be reduced to those of the individual parts
- Self-organization
 - Leader-free creation of order
 - robustness & adaptability
 - Power law behavior
- Feedback
 - Nonlinear interactions that amplify or control

Are <u>Tutorial Groups</u> Complex Systems?

Which is not to say that the tutorial students are dumb as ants...

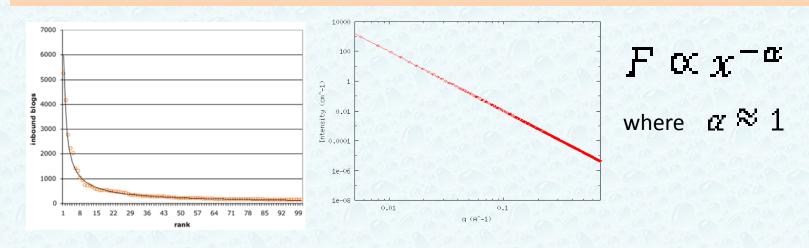
- There is a small literature on small groups as complex, self-organized systems
 - During 'turbulent' conditions, groups that selforganize are more effective (smith & comer 1994)
 - Student groups have been shown to exhibit power laws (warren, 2005)
- Motivation: by modeling the groups, we can more deeply understand their dynamics

Emergence

Patterns, properties, behaviors that cannot be reduced to those of the individual parts

- Behavior modes <u>emerge</u> out of the individual students' framing of behavior modes
 - Each student frames tutorials differently
 - Overall, through feedback (e.g. frame negotiation), the group settles on one of the same four modes at any time
 - All of the groups seem to exhibit the same four behavior modes (independent of membership)

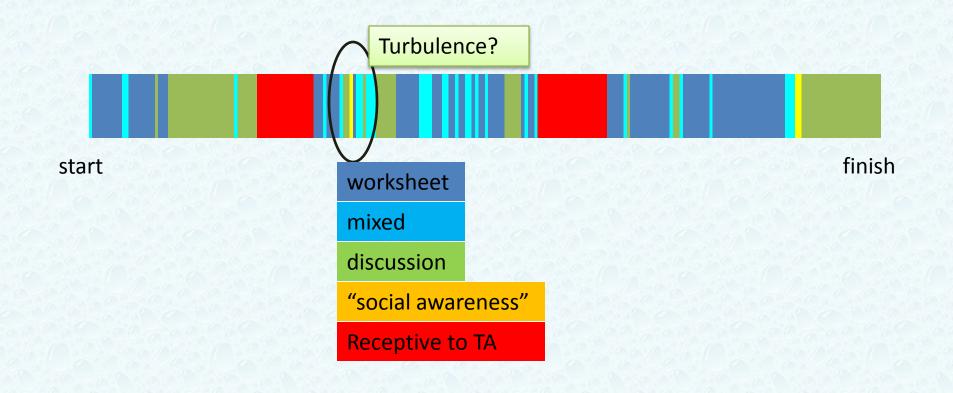
Self-Organization


Robustness and adaptability in creating and maintaining order

- The behavior modes are <u>stable</u>
 - lasting from seconds to minutes
- The behavior modes are <u>robust</u>
 - W.r.t changes in the environment
- The tutorials are "far-from equilibrium"
 - Fundamental assumptions (e.g. dependency)
 challenged
- The tutorials are <u>leaderless</u>

The Power Law

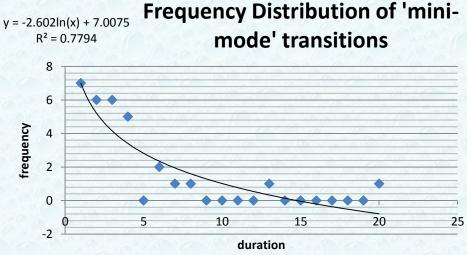
<u>Self-organized criticality</u>—When self-organized systems are on the brink of order and chaos (i.e. the turbulent regime)


Critical systems typically exhibit fractal outputs that can be characterized by a <u>power law</u>

Power Law for Tutorials?

It seemed that students during a 'turbulent' time make many teeny mode transitions...

perhaps there are MANY small ones, and a few large ones?



Power Law for Tutorials?

Watching a single student for 'mode-like' behavior transitions on the order of a second.

Graph the frequency of 'mini-modes' of given lengths (1 second, 2 seconds...)

Complex Systems Literature

- Per Bak
- Stuart Kauffman
- Etc...